<u>Math 7 Materials</u>

Table of Contents

Problem of the Month "First Rate"

Level A (Day 1)	Page 1
Level B (Day 1)	Page 2
Level C (Day 2)	Page 3
Division (Day 3)	Page 4
Factors (Day 4)	Page 5
Fraction Match (Day 5)	Page 7
Unfolding a Box (Day 6)	Page 9
Hotel Elevator (Day 7)	Page 11
It is Just an Expression (Day 8)	Page 13
Is it Proportional? (Day 9)	Page 15
World Sport League (Day 10)	Page 17

Problem of the Month First Rate

Level A

- 1. Who has to take more jumps to get to the top of the stairs?
- 2. When Dylan jumps up the staircase, how many jumps does he make?
- 3. When Austin jumps up the staircase, how many jumps does he make?
- 4. If Austin and Dylan each took 5 jumps, who would be farthest up the stairs?
- 5. At the end of the race who took less jumps?
- 6. Who do you think won the race? Explain your answer.

Problem of the MonthFirst RatePage 1(c) Noyce Foundation 2008. To reproduce this document, permission must be granted by the Noyce Foundation:
info@noycefdn.org.

Level B

Tom and Diane start to race. Tom took 4 seconds to run 6 yards. Diane ran 5 yards in 3 seconds.

If they continued to run at the same speeds, who would get to 30 yards first? Show how you figured out.

Who runs faster? How can you compare their speeds?

Level C

The Environmental Club at school attends an annual community clean-up event. They have recycling games. A team is assigned an area of land that is scattered with litter. The goal is for a pair of participants to clean up the area in the fastest time possible.

Tammy, working alone, could clean one-half the area in one hour. Her partner Melissa, working alone, could clean one-third of the area in one hour. During the contest when they work together, how long will it take them to clean the area? Explain how you found your solution.

Division

This problem gives you the chance to: • relate a given division calculation to appropriate practical situations

When you calculate 100 ÷ 6 using a calculator, the result is 16.66666667.

This result can be used to give a **sensible** answer to all the following questions except one.

- 1. Write down the sensible answers and find the question that cannot be answered using this result.
 - a. How much does each person pay when 6 people share the cost of a meal costing \$100?
 - b. 100 children each need a pencil. Pencils are sold in packs of 6. How many packs are needed?
 - c. What is the cost per gram of shampoo costing \$6 for 100 grams?

d. How many CDs costing \$6 each can be bought for \$100?

- e. What is the average distance per day, to the nearest mile, travelled by a hiker on the Appalachian Trail, who covers 100 miles in 6 days?
- Write another question, together with its sensible answer, that can be answered using 100 ÷
 6.

Copyright © 2007 by Mathematics Assessment Resource Service. All rights reserved.

Factors

This problem gives you the chance to:work with factors of numbers up to 30

A factor of a number divides into the number exactly.

This table shows all the factors of most of the numbers up to 30.

Number	Factors	Number of factors	Number	Factors	Number of factors
1	1	1	16	1, 2, 4, 8, 16	5
2	1, 2	2	17	1, 17	2
3	1, 3	2	18	1, 2, 3, 6, 9, 18	6
4	1, 2, 4	3	19	1, 19	2
5	1,5	2	20	1, 2, 4, 5, 10, 20	6
6	1, 2, 3, 6	4	21	1, 3, 7, 21	4
7	1,7	2	22	1, 2, 11, 22	4
8	1, 2, 4, 8	4	23	1, 23	2
9	1, 3, 9	3	24	1, 2, 3, 4, 6, 8, 12, 24	8
10	1, 2, 5, 10	4	25	1, 5, 25	3
11	1, 11	2	26	1, 2, 13, 26	4
12	1, 2, 3, 4, 6, 12	6	27		4
13	1, 13	2	28		6
14	1, 2, 7, 14	4	29		2
15	1, 3, 5, 15	4	30	1, 2, 3, 5, 6, 10, 15, 30	8

Copyright © 2007 by Mathematics Assessment Resource Service. All rights reserved.

Factors Test 6

- 1. Write the factors of the numbers 27, 28, and 29 in the table.
- 2. The numbers 1 and 4 have an odd number of factors.
 - a. Write down all the numbers up to 30 that have an odd number of factors.
 - 1, 4, ____, ____, ____
 - b. Complete this sentence:

All the ______ numbers up to 30 have an odd number of factors.

3. The number 10 has two odd factors (1 and 5). It also has two even factors (2 and 10).

The number 18 has three odd factors (1, 3 and 9). It also has three even factors (2, 6 and 10).

- a. Write down all the numbers up to 30 that have an equal number of odd and even factors.
 - 2, 6, 10, ____, 18, ____, ____, ____,
- b. Describe two patterns you can see in the above sequence of numbers.

9

Factors Test 6

Performance Task Fraction Match

Tracy had some cards with numbers on them.

1. Tracy drew the number line below and labeled the points on the number line. Match each of the number cards to a point on the line. A point may have more than one card match.

(c) Silicon Valley Mathematics Initiative 2011. To reproduce this document, permission must be granted by the SVMI info@svmimac.org

2. Tracy made a puzzle about fraction operations using the same set of fraction cards. Fill in the numbers from the fraction cards to make true number sentences. You may use the same card more than once.

Show how you figured it out.

Performance Task Unfolding a Box

Avani went to the grocery store and brought home a cardboard box that was covered with a sealed top.

Two end faces of the box are squares. The area of the face on either end is 64 square inches.

- 1. What is the length of the side of a square face?
- The length at the longer side of the other faces is one and a half the length of the square face.
 What is the area of one of the other rectangular faces of the box? _______
 Show how you figured it out.

3. How much can the box hold? Explain your answer.

2012

4. Avani wanted to cut the sides of the box and create one big piece of cardboard that would lie flat. How many sides would she need to cut to make a flat piece of cardboard that still had every face connected together?

5. Draw the flat sheet of cardboard and label the sides that were cut.

6. What is the total area of the cardboard? Show how you figured it out.

Performance Test 2012 (c) Silicon Valley Mathematics Initiative 2011. To reproduce this document, permission must be granted by the SVMI info@svmimac.org

Hotel Elevator MAC Assessment Task

A high-rise hotel is built over an underground parking garage. There is an elevator that takes guests from the lowest floor of the garage to the highest floor in the hotel. The hotel uses integers to label the floors. Zero is ground level. Negative numbers are the floors in the underground parking garage. Positive numbers are the floors of the hotel.

The elevator has the following button pad that controls which floor the elevator can travel to:

24 23 22 21 20 19 18 17
16 15 14 13 12 11 10 9
8 7 6 5 4 3 2 1
0 -1 -2 -3 -4 -5 -6 -7

- 1. How many floors are there in the underground garage? ______ floors
- 2. A guest gets on the elevator at the 24th floor. How many floors must the person travel to get to her car parked on the floor -7?

_____ floors

Write a number sentence using integers to represent the distance she traveled.

3. A guest gets out of his car on floor -6 and travels 15 floors. What floor will he be at when the elevator stops?

Write a number sentence using integers to represent the situation.

4. Ms. Fiat gets out of her car on floor -2 and gets off at floor -7. How far did she travel?

_____ floors

Write a number sentence using integers to represent the situation.

The elevator starts at ground level. Over a fifteen minute time period the elevator stops at the following floors:

-4, 18, 7, -2, -6, 23, 2 and 6

5. What was the average distance the elevator traveled between floors?

_____ floors

Show how you figured it out.

It is Just an Expression MAC Assessment Task

Jesse is playing a game with her brother. She writes a mathematical statement and shows her brother two cards with different mathematical equations. She writes the following statement and shows two cards.

There are five times as many sixth graders as eighth graders here.

$$5 \bullet E = S$$

- 1. Which equation matches the statement? _____
- 2. Write a new statement for the other card.

Jesse writes a second mathematical statement and shows her brother two cards with different mathematical equations.

Fifteen less than Jesse's age is 6 more than Tanya's age.

$$15 - J = 6 + T$$

MAC Test 6It is Just an ExpressionP 5© Silicon Valley Mathematics Initiative 2014. To reproduce this document, permission must be granted by the
SVMI info@symimac.org

3. Which equation matches the statement?

4. Write a new statement for the other card.

Jesse writes the following statement.

The number of students in the class (x) will be divided into teams of 4, except one team will have 5, resulting in 8 teams in all.

- 5. Write a mathematical equation for the statement above.
- 6. Given the equation:

$$\frac{x-5}{4} = 8$$

Write a statement that matches the equation.

MAC Test 6It's Just an ExpressionP 6© Silicon Valley Mathematics Initiative 2014. To reproduce this document, permission must be granted by the
SVMI info@svmimac.org

Is It Proportional? MAC Assessment Task

The chart lists situations that can be modeled with mathematics. Write an equation to model each situation. Determine whether the situation is directly proportional or not directly proportional.

Situation	Write an equation using variables x and y to represent the situation.	Is the equation directly
		proportional?
Tom is twice as old as his		
sister. His sister is x years		
old. In five years how old will		
Tom be?		
Tammy is baking cookies.		
She knows she needs x cups of		
flour to make a regular batch.		
She wants to triple the number		
of cookies. How many cups		
of flour does she need?		
Trevor has averaged 64 miles		
per hour to get from home to		
the ocean in 30 minutes. If he		
slowed down by x miles per		
hour, how long would it take		
him to drive back home the		
same route?		
Teri joined a dance team. It		
costs \$20 to join and \$5 each		
time she goes to class. How		
much does it cost to be on the		
team for x classes?		
(0.2) What is the equation of the line?		
MAC Test 7	Is It Proportional?	PS

© Silicon Valley Mathematics Initiative 2013. To reproduce this document, permission must be granted by the SVMI info@svmimac.org

2. Write a situation that is proportional.

8

MAC Test 7Is it Proportional?P 6© Silicon Valley Mathematics Initiative 2013. To reproduce this document, permission must be granted by the
SVMI info@svmimac.org

World Sport Leagues Assessment Task

Dylan looked up the ten most popular sports leagues in the world in 2011. He found this table on an internet site.

League	Sport	Country	Teams	Games	Total attendance
Australian	Australian				
Football League	rules football	Australia	17	196	7,146,604
	Association				
Bundesliga	football	Germany	18	306	13,057,899
Canadian	Canadian				
Football League	football	Canada	8	72	2,000,552
	Association				
La Liga	football	Spain	20	380	11,039,808
Major League		United States /			
Baseball	Baseball	Canada	30	2,420	73,451,522
National	American				
Football League	football	United States	32	256	17,252,949
Nippon					
Professional					
Baseball	Baseball	Japan	12	846	21,679,596
	Association				
Premier League	football	England	20	380	13,407,540
Primera División	Association				
de México	football	Mexico	18	306	7,905,999
	Association				
Serie A	football	Italy	20	380	9,131,780

1. Which league has the greatest attendance?

How many people attended the games?

2. What is the mean number of teams in these ten most popular leagues?

Show how you figured it out.

Dylan and his friend Scott argued which measure would best represent the typical number of games played in a league.
 Dylan thought it was the median. Scott thought it was the mode.

Who do you agree with?	
------------------------	--

Find that measure	_
-------------------	---

Explain why it could represent the typical number of games played in the league.

4. Which league has the best attendance per game? _____ Explain how you figured it out.

5. What is the best average total attendance for a team in a league? ______ Explain how you figured it out.

8